Title: | Stability Analysis of Genotype by Environment Interaction (GEI) |
---|---|
Description: | Functionalities to perform Stability Analysis of Genotype by Environment Interaction (GEI) to identify superior and stable genotypes under diverse environments. It performs Eberhart & Russel's ANOVA (1966) (<doi:10.2135/cropsci1966.0011183X000600010011x>), Finlay and Wilkinson (1963) Joint Linear Regression (<doi:10.1071/AR9630742>), Wricke (1962, 1964) Ecovalence, Shukla's stability variance parameter (1972) (<doi:10.1038/hdy.1972.87>) and Kang's (1991) (<doi:10.2134/agronj1991.00021962008300010037x>) simultaneous selection for high yielding and stable parameter. |
Authors: | Muhammad Yaseen [aut, cre], Kent M. Eskridge [aut, ctb], Ghulam Murtaza [aut, ctb] |
Maintainer: | Muhammad Yaseen <[email protected]> |
License: | GPL-2 |
Version: | 0.5.0 |
Built: | 2025-03-08 02:29:45 UTC |
Source: | https://github.com/myaseen208/stability |
Additive ANOVA for Genotypes by Environment Interaction (GEI) model
add_anova(.data, .y, .rep, .gen, .env) ## Default S3 method: add_anova(.data, .y, .rep, .gen, .env)
add_anova(.data, .y, .rep, .gen, .env) ## Default S3 method: add_anova(.data, .y, .rep, .gen, .env)
.data |
data.frame |
.y |
Response Variable |
.rep |
Replication Factor |
.gen |
Genotypes Factor |
.env |
Environment Factor |
Additive ANOVA
Muhammad Yaseen ([email protected])
Kent M. Edkridge ([email protected])
Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.
data(ge_data) YieldANOVA <- add_anova( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env ) YieldANOVA
data(ge_data) YieldANOVA <- add_anova( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env ) YieldANOVA
Performs Additive Main Effects and Multiplicative Interaction (AMMI) Analysis for Genotypes by Environment Interaction (GEI)
ammi(.data, .y, .rep, .gen, .env) ## Default S3 method: ammi(.data, .y, .rep, .gen, .env)
ammi(.data, .y, .rep, .gen, .env) ## Default S3 method: ammi(.data, .y, .rep, .gen, .env)
.data |
data.frame |
.y |
Response Variable |
.rep |
Replication Factor |
.gen |
Genotypes Factor |
.env |
Environment Factor |
Stability Measures
Muhammad Yaseen ([email protected])
Kent M. Edkridge ([email protected])
Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.
data(ge_data) Yield.ammi <- ammi( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env ) Yield.ammi
data(ge_data) Yield.ammi <- ammi( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env ) Yield.ammi
Plots Additive Main Effects and Multiplicative Interaction (AMMI) for Genotypes by Environment Interaction (GEI)
ammi_biplot(.data, .y, .rep, .gen, .env) ## Default S3 method: ammi_biplot(.data, .y, .rep, .gen, .env)
ammi_biplot(.data, .y, .rep, .gen, .env) ## Default S3 method: ammi_biplot(.data, .y, .rep, .gen, .env)
.data |
data.frame |
.y |
Response Variable |
.rep |
Replication Factor |
.gen |
Genotypes Factor |
.env |
Environment Factor |
Stability Measures
Muhammad Yaseen ([email protected])
Kent M. Edkridge ([email protected])
Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.
data(ge_data) ammi_biplot( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env )
data(ge_data) ammi_biplot( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env )
ANOVA of Eberhart & Russel’s Model
er_anova(.data, .y, .rep, .gen, .env) ## Default S3 method: er_anova(.data, .y, .rep, .gen, .env)
er_anova(.data, .y, .rep, .gen, .env) ## Default S3 method: er_anova(.data, .y, .rep, .gen, .env)
.data |
data.frame |
.y |
Response Variable |
.rep |
Replication Factor |
.gen |
Genotypes Factor |
.env |
Environment Factor |
Additive ANOVA
Muhammad Yaseen ([email protected])
Kent M. Edkridge ([email protected])
Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.
data(ge_data) Yield.er_anova <- er_anova( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env ) Yield.er_anova
data(ge_data) Yield.er_anova <- er_anova( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env ) Yield.er_anova
ge_data
is used for performing Genotypes by Environment Interaction (GEI) Analysis.
data(ge_data)
data(ge_data)
A data.frame
1320 obs. of 6 variables.
Gen Genotype
Institute Institute
Rep Replicate
Block Block
Env Environment
Yield Yield Response
Muhammad Yaseen ([email protected])
Kent M. Edkridge ([email protected])
Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.
data(ge_data)
data(ge_data)
Calcuates Genotype by Environment Interaction Effects
ge_effects(.data, .y, .gen, .env) ## Default S3 method: ge_effects(.data, .y, .gen, .env)
ge_effects(.data, .y, .gen, .env) ## Default S3 method: ge_effects(.data, .y, .gen, .env)
.data |
data.frame |
.y |
Response Variable |
.gen |
Genotypes Factor |
.env |
Environment Factor |
Effects
Muhammad Yaseen ([email protected])
Kent M. Edkridge ([email protected])
Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.
data(ge_data) Yield.Effects <- ge_effects( .data = ge_data , .y = Yield , .gen = Gen , .env = Env ) names(Yield.Effects) Yield.Effects$ge_means Yield.Effects$ge_effects Yield.Effects$gge_effects
data(ge_data) Yield.Effects <- ge_effects( .data = ge_data , .y = Yield , .gen = Gen , .env = Env ) names(Yield.Effects) Yield.Effects$ge_means Yield.Effects$ge_effects Yield.Effects$gge_effects
Calcuates Genotype by Environment Interaction Means along with their Ranks
ge_means(.data, .y, .gen, .env) ## Default S3 method: ge_means(.data, .y, .gen, .env)
ge_means(.data, .y, .gen, .env) ## Default S3 method: ge_means(.data, .y, .gen, .env)
.data |
data.frame |
.y |
Response Variable |
.gen |
Genotypes Factor |
.env |
Environment Factor |
Means and Ranks
Muhammad Yaseen ([email protected])
Kent M. Edkridge ([email protected])
Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.
data(ge_data) Yield.ge_means <- ge_means( .data = ge_data , .y = Yield , .gen = Gen , .env = Env ) Yield.ge_means$ge_means Yield.ge_means$ge_ranks Yield.ge_means$g_means Yield.ge_means$e_means
data(ge_data) Yield.ge_means <- ge_means( .data = ge_data , .y = Yield , .gen = Gen , .env = Env ) Yield.ge_means$ge_means Yield.ge_means$ge_ranks Yield.ge_means$g_means Yield.ge_means$e_means
Plots Genotype plus Genotypes by Environment (GGE) Interaction Biplot for Genotypes by Environment Interaction (GEI)
gge_biplot(.data, .y, .rep, .gen, .env) ## Default S3 method: gge_biplot(.data, .y, .rep, .gen, .env)
gge_biplot(.data, .y, .rep, .gen, .env) ## Default S3 method: gge_biplot(.data, .y, .rep, .gen, .env)
.data |
data.frame |
.y |
Response Variable |
.rep |
Replication Factor |
.gen |
Genotypes Factor |
.env |
Environment Factor |
Stability Measures
Muhammad Yaseen ([email protected])
Kent M. Edkridge ([email protected])
Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.
data(ge_data) gge_biplot( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env )
data(ge_data) gge_biplot( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env )
Individual ANOVA for Each Environment
## Default S3 method: indiv_anova(.data, .y, .rep, .gen, .env)
## Default S3 method: indiv_anova(.data, .y, .rep, .gen, .env)
.data |
data.frame |
.y |
Response Variable |
.rep |
Replication Factor |
.gen |
Genotypes Factor |
.env |
Environment Factor |
Additive ANOVA
Muhammad Yaseen ([email protected])
Kent M. Edkridge ([email protected])
Ghulam Murtaza ([email protected])
Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.
data(ge_data) Yield.indiv_anova <- indiv_anova( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env ) Yield.indiv_anova
data(ge_data) Yield.indiv_anova <- indiv_anova( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env ) Yield.indiv_anova
Additive ANOVA for Genotypes by Environment Interaction (GEI) model
stab_asv(.data, .y, .rep, .gen, .env) ## Default S3 method: stab_asv(.data, .y, .rep, .gen, .env)
stab_asv(.data, .y, .rep, .gen, .env) ## Default S3 method: stab_asv(.data, .y, .rep, .gen, .env)
.data |
data.frame |
.y |
Response Variable |
.rep |
Replication Factor |
.gen |
Genotypes Factor |
.env |
Environment Factor |
Additive ANOVA
Muhammad Yaseen ([email protected])
Kent M. Edkridge ([email protected])
Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.
data(ge_data) YieldASV <- stab_asv( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env ) YieldASV
data(ge_data) YieldASV <- stab_asv( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env ) YieldASV
Stability Distance of Genotypes in Additive ANOVA for Genotypes by Environment Interaction (GEI) model
stab_dist(.data, .y, .rep, .gen, .env, .m = 2) ## Default S3 method: stab_dist(.data, .y, .rep, .gen, .env, .m = 2)
stab_dist(.data, .y, .rep, .gen, .env, .m = 2) ## Default S3 method: stab_dist(.data, .y, .rep, .gen, .env, .m = 2)
.data |
data.frame |
.y |
Response Variable |
.rep |
Replication Factor |
.gen |
Genotypes Factor |
.env |
Environment Factor |
.m |
No of PCs retained |
Stability Distance
Muhammad Yaseen ([email protected])
Kent M. Edkridge ([email protected])
data(ge_data) YieldDist <- stab_dist( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env , .m = 2 ) YieldDist
data(ge_data) YieldDist <- stab_dist( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env , .m = 2 ) YieldDist
Performs a stability analysis based on the criteria of Fox et al. (1990), using the statistical "TOP third" only. In Fox function, a stratified ranking of the genotypes at each environment separately is done. The proportion of locations at which the genotype occurred in the top third are expressed in TOP output.
stab_fox(.data, .y, .rep, .gen, .env) ## Default S3 method: stab_fox(.data, .y, .rep, .gen, .env)
stab_fox(.data, .y, .rep, .gen, .env) ## Default S3 method: stab_fox(.data, .y, .rep, .gen, .env)
.data |
data.frame |
.y |
Response Variable |
.rep |
Replication Factor |
.gen |
Genotypes Factor |
.env |
Environment Factor |
Muhammad Yaseen ([email protected])
Kent M. Edkridge ([email protected])
Fox, P.N. and Skovmand, B. and Thompson, B.K. and Braun, H.J. and Cormier, R. (1990). Yield and adaptation of hexaploid spring triticale. Euphytica, 47, 57-64.
data(ge_data) YieldFox <- stab_fox( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env ) YieldFox
data(ge_data) YieldFox <- stab_fox( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env ) YieldFox
Performs a stability analysis based on the Kang (1988) criteria. Kang nonparametric stability (ranksum) uses both "trait single value" and stability variance (Shukla, 1972), and the genotype with the lowest ranksum is commonly the most favorable one.
stab_kang(.data, .y, .rep, .gen, .env) ## Default S3 method: stab_kang(.data, .y, .rep, .gen, .env)
stab_kang(.data, .y, .rep, .gen, .env) ## Default S3 method: stab_kang(.data, .y, .rep, .gen, .env)
.data |
data.frame |
.y |
Response Variable |
.rep |
Replication Factor |
.gen |
Genotypes Factor |
.env |
Environment Factor |
Muhammad Yaseen ([email protected])
Kent M. Edkridge ([email protected])
Kang, M.S. (1988). A rank-sum method for selecting high-yielding, stable corn genotypes. Cereal Research Communications, 16, 1-2.
Shukla, G.K. (1972). Some aspects of partitioning genotype environmental components of variability. Heredity, 29, 237-245.
data(ge_data) YieldKang <- stab_kang( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env ) YieldKang
data(ge_data) YieldKang <- stab_kang( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env ) YieldKang
Additive ANOVA for Genotypes by Environment Interaction (GEI) model
stab_masv(.data, .y, .rep, .gen, .env, .m = 2) ## Default S3 method: stab_masv(.data, .y, .rep, .gen, .env, .m = 2)
stab_masv(.data, .y, .rep, .gen, .env, .m = 2) ## Default S3 method: stab_masv(.data, .y, .rep, .gen, .env, .m = 2)
.data |
data.frame |
.y |
Response Variable |
.rep |
Replication Factor |
.gen |
Genotypes Factor |
.env |
Environment Factor |
.m |
No of PCs retained |
Additive ANOVA
Muhammad Yaseen ([email protected])
Kent M. Edkridge ([email protected])
Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.
data(ge_data) YieldMASV <- stab_masv( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env , .m = 2 ) YieldMASV
data(ge_data) YieldMASV <- stab_masv( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env , .m = 2 ) YieldMASV
Stability Measures for Genotypes by Environment Interaction (GEI)
stab_measures(.data, .y, .gen, .env) ## Default S3 method: stab_measures(.data, .y, .gen, .env)
stab_measures(.data, .y, .gen, .env) ## Default S3 method: stab_measures(.data, .y, .gen, .env)
.data |
data.frame |
.y |
Response Variable |
.gen |
Genotypes Factor |
.env |
Environment Factor |
Stability Measures
Muhammad Yaseen ([email protected])
Kent M. Edkridge ([email protected])
Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.
data(ge_data) Yield.StabMeasures <- stab_measures( .data = ge_data , .y = Yield , .gen = Gen , .env = Env ) Yield.StabMeasures
data(ge_data) Yield.StabMeasures <- stab_measures( .data = ge_data , .y = Yield , .gen = Gen , .env = Env ) Yield.StabMeasures
Stability Parameters for Genotypes by Environment Interaction (GEI)
stab_par(.data, .y, .rep, .gen, .env, alpha = 0.1, .envCov = NULL) ## Default S3 method: stab_par(.data, .y, .rep, .gen, .env, alpha = 0.1, .envCov = NULL)
stab_par(.data, .y, .rep, .gen, .env, alpha = 0.1, .envCov = NULL) ## Default S3 method: stab_par(.data, .y, .rep, .gen, .env, alpha = 0.1, .envCov = NULL)
.data |
data.frame |
.y |
Response Variable |
.rep |
Replication Factor |
.gen |
Genotypes Factor |
.env |
Environment Factor |
alpha |
Level of Significance, default is 0.1 |
.envCov |
Environmental Covariate, default is NULL |
Stability Parameters
Muhammad Yaseen ([email protected])
Kent M. Edkridge ([email protected])
Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.
data(ge_data) Yield.StabPar <- stab_par( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env , alpha = 0.1 , .envCov = NULL ) Yield.StabPar
data(ge_data) Yield.StabPar <- stab_par( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env , alpha = 0.1 , .envCov = NULL ) Yield.StabPar
Individual Regression for each Genotype in Genotypes by Environment Interaction (GEI)
stab_reg(.data, .y, .rep, .gen, .env) ## Default S3 method: stab_reg(.data, .y, .rep, .gen, .env)
stab_reg(.data, .y, .rep, .gen, .env) ## Default S3 method: stab_reg(.data, .y, .rep, .gen, .env)
.data |
data.frame |
.y |
Response Variable |
.rep |
Replication Factor |
.gen |
Genotypes Factor |
.env |
Environment Factor |
Additive ANOVA
Muhammad Yaseen ([email protected])
Kent M. Edkridge ([email protected])
Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.
data(ge_data) Yield.StabReg <- stab_reg( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env ) Yield.StabReg
data(ge_data) Yield.StabReg <- stab_reg( .data = ge_data , .y = Yield , .rep = Rep , .gen = Gen , .env = Env ) Yield.StabReg
The stability
package provides functionalities to perform
Stability Analysis of Genotype by Environment Interaction (GEI)
to identify superior and stable genotypes under diverse environments.
It performs Eberhart & Russel's ANOVA (1966),
Finlay and Wilkinson (1963) Joint Linear Regression,
Wricke (1962, 1964) Ecovalence, Shukla's stability variance parameter (1972)
and Kang's (1991) simultaneous selection for high yielding and stable parameter.
Muhammad Yaseen ([email protected])
Kent M. Edkridge ([email protected])
Ghulam Murtaza ([email protected])