Title: | Experimental Design and Analysis for Tree Improvement |
---|---|
Description: | Provides data sets and R Codes for E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement, CSIRO Publishing. |
Authors: | Muhammad Yaseen [aut, cre, cph] , Sami Ullah [aut, ctb], Kent Eskridge [aut, ctb], Emlyn Williams [aut, ctb] |
Maintainer: | Muhammad Yaseen <[email protected]> |
License: | GPL-3 |
Version: | 1.1.0 |
Built: | 2024-11-12 06:13:00 UTC |
Source: | https://github.com/myaseen208/eda4treer |
Exam2.1 is used to compare two seed lots by using single factor ANOVA.
data(DataExam2.1)
data(DataExam2.1)
A data.frame
with 16 rows and 2 variables.
seedlot
Two Seedlots Seed Orchad (SO) and routin plantation (P)
dbh
Diameter at breast height
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
data(DataExam2.1)
data(DataExam2.1)
Exam2.2 is used to compare two seed lots by using ANOVA under RCB Design.
data(DataExam2.2)
data(DataExam2.2)
A data.frame
with 16 rows and 2 variables.
repl
repl
block
block
Seedlot
Two Seedlots Seed Orchad (SO) and routin plantation (P)
dbh
Diameter at breast height
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
data(DataExam2.2)
data(DataExam2.2)
Exam3.1 is part of data from Australian Centre for Agricultural Research (ACIAR) in Queensland, Australia (Experiment 309).
data(DataExam3.1)
data(DataExam3.1)
A data.frame
with 80 rows and 6 variables.
repl
Replication number of different Seedlots
PlotNo
Plot No of differnt Trees
seedlot
Seed Lot number
TreeNo
Tree number of Seedlots
ht
Height in meter
dgl
Diameter at ground level
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
data(DataExam3.1)
data(DataExam3.1)
Exam3.1.1 is part of data from Australian Centre for Agricultural Research (ACIAR) in Queensland, Australia (Experiment 309).
data(DataExam3.1.1)
data(DataExam3.1.1)
A data.frame
with 10 rows and 6 variables.
repl
Replication number of different Seedlots
PlotNo
Plot No of differnt Trees
seedlot
Seed Lot number
TreeNo
Tree number of Seedlots
ht
Height in meter
Var
Var
TreeCount
TreeCount
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
data(DataExam3.1.1)
data(DataExam3.1.1)
Exam4.3 presents the germination count data for 4 Pre-Treatments and 6 Seedlots.
data(DataExam4.3)
data(DataExam4.3)
A data.frame
with 72 rows and 8 variables.
rep
Replication number of Treatment
row
Row number of different Seedlots
column
Column number of differnt Trees
seedlot
Seed lot number
treat
Treatment types
count
Number of germinated seeds out of 25
percent
Germination Percentage
contcomp
Control or Trated Plot
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
data(DataExam4.3)
data(DataExam4.3)
Exam4.3.1 presents the germination count data for 4 Pre-Treatments and 6 Seedlots.
data(DataExam4.3.1)
data(DataExam4.3.1)
A data.frame
with 72 rows and 8 variables.
Row
Row number of different Seedlots
Column
Column number of differnt Trees
Replication
Replication number of Treatment
Contcomp
Control or Trated Plot
Pretreatment
Treatment types
SeedLot
Seed lot number
GerminationCount
Number of germinated seeds out of 25
Percent
Germination Percentage
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
data(DataExam4.3.1)
data(DataExam4.3.1)
Exam4.4 presents the height means for 4 seedlots under factorial arrangement for two levels of Fertilizer and two levels of Irrigation.
data(DataExam4.4)
data(DataExam4.4)
A data.frame
with 32 rows and 5 variables.
repl
Replication number
irrig
Irrigation type
fert
Fertilizer type
seedlot
Seed Lot number
height
Height of the plants
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
data(DataExam4.4)
data(DataExam4.4)
Exam5.1 presents the height of 27 seedlots from 4 sites.
data(DataExam5.1)
data(DataExam5.1)
A data.frame
with 108 rows and 4 variables.
site
Sites for the experiment
seedlot
Seed lot number
ht
Height of the plants
sitemean
Mean Height of Each Site
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
data(DataExam5.1)
data(DataExam5.1)
Exam5.2 presents the height of 37 seedlots from 6 sites.
data(DataExam5.2)
data(DataExam5.2)
A data.frame
with 108 rows and 4 variables.
site
Sites for the experiment
seedlot
Seed lot number
ht
Height of the plants
sitemean
Mean Height of Each Site
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
data(DataExam5.2)
data(DataExam5.2)
Exam 6.2 Dbh mean, Dbh varince and number of trees per plot from 3 provinces("PNG","Sabah","Queensland") with 4 replicationsof 48 families.
data(DataExam6.2)
data(DataExam6.2)
A data.frame
with 192 rows and 7 variables.
Replication
Replication number of different Families
Plot.number
Plot number of differnt Trees
Family
Family Numuber
Province
Province of family
Dbh.mean
Average Diameter at breast height of trees within plot
Dbh.variance
Variance of Diameter at breast height of trees within plot
Dbh.count
Number of trees within plot
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
data(DataExam6.2)
data(DataExam6.2)
Exam8.1 presents the Diameter at breast height (Dbh) of 60 SeedLots under layout of row column design with 6 rows and 10 columns in 18 countries and 59 provinces of 18 selected countries.
data(DataExam8.1)
data(DataExam8.1)
A data.frame
with 236 rows and 8 variables.
repl
There are 4 replication for the design
row
Experiment is conducted under 6 rows
\
col
Experiment is conducted under 4 columns
inoc
Seedling were inoculated for 2 different time periods half for one week and half for seven weeks
prov
provenance
Country
Data for different seedlots was collected from 18 countries
Dbh
Diameter at breast height
Country.1
Recoded Country lables
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
data(DataExam8.1)
data(DataExam8.1)
Exam8.2 presents the Diameter at breast height (Dbh) of 60 SeedLots under layout of row column design with 6 rows and 10 columns in 18 countries and 59 provinces of 18 selected countries.
data(DataExam8.2)
data(DataExam8.2)
A data.frame
with 236 rows and 8 variables.
repl
There are 4 replication for the design
row
Experiment is conducted under 6 rows
\
column
Experiment is conducted under 4 columns
clonenum
Clonenum
contcompf
Contcompf
standard
Standard
clone
Clone
dbh
dbhmean
dbhvar
dbhvariance
ht
htmean
htvar
htvariance
count
count
contcompv
Contcompv
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
data(DataExam8.2)
data(DataExam8.2)
Exam2.1 is used to compare two seed lots by using single factor ANOVA.
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam2.1) # Pg. 22 fmtab2.3 <- lm(formula = dbh ~ seedlot, data = DataExam2.1) # Pg. 23 anova(fmtab2.3) # Pg. 23 emmeans(object = fmtab2.3, specs = ~ seedlot) emmip(object = fmtab2.3, formula = ~ seedlot) + theme_classic()
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam2.1) # Pg. 22 fmtab2.3 <- lm(formula = dbh ~ seedlot, data = DataExam2.1) # Pg. 23 anova(fmtab2.3) # Pg. 23 emmeans(object = fmtab2.3, specs = ~ seedlot) emmip(object = fmtab2.3, formula = ~ seedlot) + theme_classic()
Exam2.2 is used to compare two seed lots by using ANOVA under RCB Design.
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam2.2) # Pg. 24 fmtab2.5 <- lm( formula = dbh ~ block + seedlot , data = DataExam2.2 ) # Pg. 26 anova(fmtab2.5) # Pg. 26 emmeans(object = fmtab2.5, specs = ~ seedlot) emmip(object = fmtab2.5, formula = ~ seedlot) + theme_classic()
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam2.2) # Pg. 24 fmtab2.5 <- lm( formula = dbh ~ block + seedlot , data = DataExam2.2 ) # Pg. 26 anova(fmtab2.5) # Pg. 26 emmeans(object = fmtab2.5, specs = ~ seedlot) emmip(object = fmtab2.5, formula = ~ seedlot) + theme_classic()
Exam3.1 is part of data from Australian Centre for Agricultural Research (ACIAR) in Queensland, Australia (Experiment 309).
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) library(supernova) data(DataExam3.1) # Pg. 28 fmtab3.3 <- lm( formula = ht ~ repl*seedlot , data = DataExam3.1 ) fmtab3.3ANOVA1 <- anova(fmtab3.3) %>% mutate( "F value" = c( anova(fmtab3.3)[1:2, 3]/anova(fmtab3.3)[3, 3] , anova(fmtab3.3)[3, 4] , NA ) ) # Pg. 33 (Table 3.3) fmtab3.3ANOVA1 %>% mutate( "Pr(>F)" = c( NA , pf( q = fmtab3.3ANOVA1[2, 4] , df1 = fmtab3.3ANOVA1[2, 1] , df2 = fmtab3.3ANOVA1[3, 1], lower.tail = FALSE ) , NA , NA ) ) # Pg. 33 (Table 3.3) emmeans(object = fmtab3.3, specs = ~ seedlot) # Pg. 34 (Figure 3.2) ggplot( mapping = aes( x = fitted.values(fmtab3.3) , y = residuals(fmtab3.3) ) ) + geom_point(size = 2) + labs( x = "Fitted Values" , y = "Residual" ) + theme_classic() # Pg. 33 (Table 3.4) DataExam3.1m <- DataExam3.1 DataExam3.1m[c(28, 51, 76), 5] <- NA DataExam3.1m[c(28, 51, 76), 6] <- NA fmtab3.4 <- lm( formula = ht ~ repl*seedlot , data = DataExam3.1m ) fmtab3.4ANOVA1 <- anova(fmtab3.4) %>% mutate( "F value" = c( anova(fmtab3.4)[1:2, 3]/anova(fmtab3.4)[3, 3] , anova(fmtab3.4)[3, 4] , NA ) ) # Pg. 33 (Table 3.4) fmtab3.4ANOVA1 %>% mutate( "Pr(>F)" = c( NA , pf( q = fmtab3.4ANOVA1[2, 4] , df1 = fmtab3.4ANOVA1[2, 1] , df2 = fmtab3.4ANOVA1[3, 1], lower.tail = FALSE ) , NA , NA ) ) # Pg. 33 (Table 3.4) emmeans(object = fmtab3.4, specs = ~ seedlot)
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) library(supernova) data(DataExam3.1) # Pg. 28 fmtab3.3 <- lm( formula = ht ~ repl*seedlot , data = DataExam3.1 ) fmtab3.3ANOVA1 <- anova(fmtab3.3) %>% mutate( "F value" = c( anova(fmtab3.3)[1:2, 3]/anova(fmtab3.3)[3, 3] , anova(fmtab3.3)[3, 4] , NA ) ) # Pg. 33 (Table 3.3) fmtab3.3ANOVA1 %>% mutate( "Pr(>F)" = c( NA , pf( q = fmtab3.3ANOVA1[2, 4] , df1 = fmtab3.3ANOVA1[2, 1] , df2 = fmtab3.3ANOVA1[3, 1], lower.tail = FALSE ) , NA , NA ) ) # Pg. 33 (Table 3.3) emmeans(object = fmtab3.3, specs = ~ seedlot) # Pg. 34 (Figure 3.2) ggplot( mapping = aes( x = fitted.values(fmtab3.3) , y = residuals(fmtab3.3) ) ) + geom_point(size = 2) + labs( x = "Fitted Values" , y = "Residual" ) + theme_classic() # Pg. 33 (Table 3.4) DataExam3.1m <- DataExam3.1 DataExam3.1m[c(28, 51, 76), 5] <- NA DataExam3.1m[c(28, 51, 76), 6] <- NA fmtab3.4 <- lm( formula = ht ~ repl*seedlot , data = DataExam3.1m ) fmtab3.4ANOVA1 <- anova(fmtab3.4) %>% mutate( "F value" = c( anova(fmtab3.4)[1:2, 3]/anova(fmtab3.4)[3, 3] , anova(fmtab3.4)[3, 4] , NA ) ) # Pg. 33 (Table 3.4) fmtab3.4ANOVA1 %>% mutate( "Pr(>F)" = c( NA , pf( q = fmtab3.4ANOVA1[2, 4] , df1 = fmtab3.4ANOVA1[2, 1] , df2 = fmtab3.4ANOVA1[3, 1], lower.tail = FALSE ) , NA , NA ) ) # Pg. 33 (Table 3.4) emmeans(object = fmtab3.4, specs = ~ seedlot)
Exam3.1.1 is part of data from Australian Centre for Agricultural Research (ACIAR) in Queensland, Australia (Experiment 309).
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam3.1.1) # Pg. 36 fm3.8 <- lm( formula = ht ~ repl + seedlot , data = DataExam3.1.1 ) # Pg. 40 anova(fm3.8) # Pg. 40 emmeans(object = fm3.8, specs = ~seedlot) emmip(object = fm3.8, formula = ~seedlot) + theme_classic()
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam3.1.1) # Pg. 36 fm3.8 <- lm( formula = ht ~ repl + seedlot , data = DataExam3.1.1 ) # Pg. 40 anova(fm3.8) # Pg. 40 emmeans(object = fm3.8, specs = ~seedlot) emmip(object = fm3.8, formula = ~seedlot) + theme_classic()
Exam4.3 presents the germination count data for 4 Pre-Treatments and 6 Seedlots.
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam4.3) # Pg. 50 fm4.2 <- aov( formula = percent ~ repl + contcomp + seedlot + treat/contcomp + contcomp/seedlot + treat/contcomp/seedlot , data = DataExam4.3 ) # Pg. 54 anova(fm4.2) # Pg. 54 model.tables(x = fm4.2, type = "means") emmeans(object = fm4.2, specs = ~ contcomp) emmeans(object = fm4.2, specs = ~ seedlot) emmeans(object = fm4.2, specs = ~ contcomp + treat) emmeans(object = fm4.2, specs = ~ contcomp + seedlot) emmeans(object = fm4.2, specs = ~ contcomp + treat + seedlot) DataExam4.3 %>% dplyr::group_by(treat, contcomp, seedlot) %>% dplyr::summarize(Mean = mean(percent)) RESFIT <- data.frame( residualvalue = residuals(fm4.2) , fittedvalue = fitted.values(fm4.2) ) ggplot(mapping = aes( x = fitted.values(fm4.2) , y = residuals(fm4.2))) + geom_point(size = 2) + labs( x = "Fitted Values" , y = "Residuals" ) + theme_classic()
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam4.3) # Pg. 50 fm4.2 <- aov( formula = percent ~ repl + contcomp + seedlot + treat/contcomp + contcomp/seedlot + treat/contcomp/seedlot , data = DataExam4.3 ) # Pg. 54 anova(fm4.2) # Pg. 54 model.tables(x = fm4.2, type = "means") emmeans(object = fm4.2, specs = ~ contcomp) emmeans(object = fm4.2, specs = ~ seedlot) emmeans(object = fm4.2, specs = ~ contcomp + treat) emmeans(object = fm4.2, specs = ~ contcomp + seedlot) emmeans(object = fm4.2, specs = ~ contcomp + treat + seedlot) DataExam4.3 %>% dplyr::group_by(treat, contcomp, seedlot) %>% dplyr::summarize(Mean = mean(percent)) RESFIT <- data.frame( residualvalue = residuals(fm4.2) , fittedvalue = fitted.values(fm4.2) ) ggplot(mapping = aes( x = fitted.values(fm4.2) , y = residuals(fm4.2))) + geom_point(size = 2) + labs( x = "Fitted Values" , y = "Residuals" ) + theme_classic()
Exam4.3.1 presents the germination count data for 4 Pre-Treatments and 6 Seedlots.
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam4.3) # Pg. 57 fm4.4 <- aov( formula = percent ~ repl + treat*seedlot , data = DataExam4.3 %>% filter(treat != "control") ) # Pg. 57 anova(fm4.4) model.tables(x = fm4.4, type = "means", se = TRUE) emmeans(object = fm4.4, specs = ~ treat) emmeans(object = fm4.4, specs = ~ seedlot) emmeans(object = fm4.4, specs = ~ treat * seedlot)
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam4.3) # Pg. 57 fm4.4 <- aov( formula = percent ~ repl + treat*seedlot , data = DataExam4.3 %>% filter(treat != "control") ) # Pg. 57 anova(fm4.4) model.tables(x = fm4.4, type = "means", se = TRUE) emmeans(object = fm4.4, specs = ~ treat) emmeans(object = fm4.4, specs = ~ seedlot) emmeans(object = fm4.4, specs = ~ treat * seedlot)
Exam4.4 presents the height means for 4 seedlots under factorial arrangement for two levels of Fertilizer and two levels of Irrigation.
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam4.4) # Pg. 58 fm4.6 <- aov( formula = height ~ repl + irrig*fert*seedlot + Error(repl/irrig:fert) , data = DataExam4.4 ) # Pg. 61 summary(fm4.6) # Pg. 61 model.tables(x = fm4.6, type = "means") # Pg. 61 emmeans(object = fm4.6, specs = ~ irrig) emmip(object = fm4.6, formula = ~ irrig) + theme_classic()
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam4.4) # Pg. 58 fm4.6 <- aov( formula = height ~ repl + irrig*fert*seedlot + Error(repl/irrig:fert) , data = DataExam4.4 ) # Pg. 61 summary(fm4.6) # Pg. 61 model.tables(x = fm4.6, type = "means") # Pg. 61 emmeans(object = fm4.6, specs = ~ irrig) emmip(object = fm4.6, formula = ~ irrig) + theme_classic()
Exam5.1 presents the height of 27 seedlots from 4 sites.
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam5.1) # Pg.68 fm5.4 <- lm( formula = ht ~ site*seedlot , data = DataExam5.1 ) # Pg. 73 anova(fm5.4) # Pg. 73 emmeans(object = fm5.4, specs = ~ site) emmeans(object = fm5.4, specs = ~ seedlot) ANOVAfm5.4 <- anova(fm5.4) ANOVAfm5.4[4, 1:3] <- c(208, 208*1040, 1040) ANOVAfm5.4[3, 4] <- ANOVAfm5.4[3, 3]/ANOVAfm5.4[4, 3] ANOVAfm5.4[3, 5] <- pf( q = ANOVAfm5.4[3, 4] , df1 = ANOVAfm5.4[3, 1] , df2 = ANOVAfm5.4[4, 1] , lower.tail = FALSE ) # Pg. 73 ANOVAfm5.4 # Pg. 80 DataExam5.1 %>% filter(seedlot %in% c("13653", "13871")) %>% ggplot( data = . , mapping = aes( x = sitemean , y = ht , color = seedlot , shape = seedlot ) ) + geom_point() + geom_smooth( method = lm , se = FALSE , fullrange = TRUE ) + theme_classic() + labs( x = "SiteMean" , y = "SeedLot Mean" ) Tab5.10 <- DataExam5.1 %>% summarise(Mean = mean(ht), .by = seedlot) %>% left_join( DataExam5.1 %>% nest_by(seedlot) %>% mutate(fm1 = list(lm(ht ~ sitemean, data = data))) %>% summarise(Slope = coef(fm1)[2]) , by = "seedlot" ) # Pg. 81 Tab5.10 ggplot(data = Tab5.10, mapping = aes(x = Mean, y = Slope)) + geom_point(size = 2) + theme_bw() + labs( x = "SeedLot Mean" , y = "Regression Coefficient" ) DevSS1 <- DataExam5.1 %>% nest_by(seedlot) %>% mutate(fm1 = list(lm(ht ~ sitemean, data = data))) %>% summarise(SSE = anova(fm1)[2, 2]) %>% ungroup() %>% summarise(Dev = sum(SSE)) %>% as.numeric() ANOVAfm5.4[2, 2] length(levels(DataExam5.1$SeedLot)) ANOVAfm5.4.1 <- rbind( ANOVAfm5.4[1:3, ] , c( ANOVAfm5.4[2, 1] , ANOVAfm5.4[3, 2] - DevSS1 , (ANOVAfm5.4[3, 2] - DevSS1)/ANOVAfm5.4[2, 1] , NA , NA ) , c( ANOVAfm5.4[3, 1]-ANOVAfm5.4[2, 1] , DevSS1 , DevSS1/(ANOVAfm5.4[3, 1]-ANOVAfm5.4[2, 1]) , DevSS1/(ANOVAfm5.4[3, 1]-ANOVAfm5.4[2, 1])/ANOVAfm5.4[4, 3] , pf( q = DevSS1/(ANOVAfm5.4[3, 1]-ANOVAfm5.4[2, 1])/ANOVAfm5.4[4, 3] , df1 = ANOVAfm5.4[3, 1]-ANOVAfm5.4[2, 1] , df2 = ANOVAfm5.4[4, 1] , lower.tail = FALSE ) ) , ANOVAfm5.4[4, ] ) rownames(ANOVAfm5.4.1) <- c( "Site" , "seedlot" , "site:seedlot" , " regressions" , " deviations" , "Residuals" ) # Pg. 82 ANOVAfm5.4.1
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam5.1) # Pg.68 fm5.4 <- lm( formula = ht ~ site*seedlot , data = DataExam5.1 ) # Pg. 73 anova(fm5.4) # Pg. 73 emmeans(object = fm5.4, specs = ~ site) emmeans(object = fm5.4, specs = ~ seedlot) ANOVAfm5.4 <- anova(fm5.4) ANOVAfm5.4[4, 1:3] <- c(208, 208*1040, 1040) ANOVAfm5.4[3, 4] <- ANOVAfm5.4[3, 3]/ANOVAfm5.4[4, 3] ANOVAfm5.4[3, 5] <- pf( q = ANOVAfm5.4[3, 4] , df1 = ANOVAfm5.4[3, 1] , df2 = ANOVAfm5.4[4, 1] , lower.tail = FALSE ) # Pg. 73 ANOVAfm5.4 # Pg. 80 DataExam5.1 %>% filter(seedlot %in% c("13653", "13871")) %>% ggplot( data = . , mapping = aes( x = sitemean , y = ht , color = seedlot , shape = seedlot ) ) + geom_point() + geom_smooth( method = lm , se = FALSE , fullrange = TRUE ) + theme_classic() + labs( x = "SiteMean" , y = "SeedLot Mean" ) Tab5.10 <- DataExam5.1 %>% summarise(Mean = mean(ht), .by = seedlot) %>% left_join( DataExam5.1 %>% nest_by(seedlot) %>% mutate(fm1 = list(lm(ht ~ sitemean, data = data))) %>% summarise(Slope = coef(fm1)[2]) , by = "seedlot" ) # Pg. 81 Tab5.10 ggplot(data = Tab5.10, mapping = aes(x = Mean, y = Slope)) + geom_point(size = 2) + theme_bw() + labs( x = "SeedLot Mean" , y = "Regression Coefficient" ) DevSS1 <- DataExam5.1 %>% nest_by(seedlot) %>% mutate(fm1 = list(lm(ht ~ sitemean, data = data))) %>% summarise(SSE = anova(fm1)[2, 2]) %>% ungroup() %>% summarise(Dev = sum(SSE)) %>% as.numeric() ANOVAfm5.4[2, 2] length(levels(DataExam5.1$SeedLot)) ANOVAfm5.4.1 <- rbind( ANOVAfm5.4[1:3, ] , c( ANOVAfm5.4[2, 1] , ANOVAfm5.4[3, 2] - DevSS1 , (ANOVAfm5.4[3, 2] - DevSS1)/ANOVAfm5.4[2, 1] , NA , NA ) , c( ANOVAfm5.4[3, 1]-ANOVAfm5.4[2, 1] , DevSS1 , DevSS1/(ANOVAfm5.4[3, 1]-ANOVAfm5.4[2, 1]) , DevSS1/(ANOVAfm5.4[3, 1]-ANOVAfm5.4[2, 1])/ANOVAfm5.4[4, 3] , pf( q = DevSS1/(ANOVAfm5.4[3, 1]-ANOVAfm5.4[2, 1])/ANOVAfm5.4[4, 3] , df1 = ANOVAfm5.4[3, 1]-ANOVAfm5.4[2, 1] , df2 = ANOVAfm5.4[4, 1] , lower.tail = FALSE ) ) , ANOVAfm5.4[4, ] ) rownames(ANOVAfm5.4.1) <- c( "Site" , "seedlot" , "site:seedlot" , " regressions" , " deviations" , "Residuals" ) # Pg. 82 ANOVAfm5.4.1
Exam5.2 presents the height of 37 seedlots from 6 sites.
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam5.2) # Pg. 75 fm5.7 <- lm( formula = ht ~ site*seedlot , data = DataExam5.2 ) # Pg. 77 anova(fm5.7) fm5.9 <- lm( formula = ht ~ site*seedlot , data = DataExam5.2 ) # Pg. 77 anova(fm5.9) ANOVAfm5.9 <- anova(fm5.9) ANOVAfm5.9[4, 1:3] <- c(384, 384*964, 964) ANOVAfm5.9[3, 4] <- ANOVAfm5.9[3, 3]/ANOVAfm5.9[4, 3] ANOVAfm5.9[3, 5] <- pf( q = ANOVAfm5.9[3, 4] , df1 = ANOVAfm5.9[3, 1] , df2 = ANOVAfm5.9[4, 1] , lower.tail = FALSE ) # Pg. 77 ANOVAfm5.9 Tab5.14 <- DataExam5.2 %>% summarise( Mean = round(mean(ht, na.rm = TRUE), 0) , .by = seedlot ) %>% left_join( DataExam5.2 %>% nest_by(seedlot) %>% mutate(fm2 = list(lm(ht ~ sitemean, data = data))) %>% summarise(Slope = round(coef(fm2)[2], 2)) , by = "seedlot" ) %>% as.data.frame() # Pg. 81 Tab5.14 DevSS2 <- DataExam5.2 %>% nest_by(seedlot) %>% mutate(fm2 = list(lm(ht ~ sitemean, data = data))) %>% summarise(SSE = anova(fm2)[2, 2]) %>% ungroup() %>% summarise(Dev = sum(SSE)) %>% as.numeric() ANOVAfm5.9.1 <- rbind( ANOVAfm5.9[1:3, ] , c( ANOVAfm5.9[2, 1] , ANOVAfm5.9[3, 2] - DevSS2 , (ANOVAfm5.9[3, 2] - DevSS2)/ANOVAfm5.9[2, 1] , NA , NA ) , c( ANOVAfm5.9[3, 1]-ANOVAfm5.9[2, 1] , DevSS2 , DevSS2/(ANOVAfm5.9[3, 1]-ANOVAfm5.9[2, 1]) , DevSS2/(ANOVAfm5.9[3, 1]-ANOVAfm5.9[2, 1])/ANOVAfm5.9[4, 3] , pf( q = DevSS2/(ANOVAfm5.9[3, 1]-ANOVAfm5.9[2, 1])/ANOVAfm5.9[4, 3] , df1 = ANOVAfm5.9[3, 1]-ANOVAfm5.9[2, 1] , df2 = ANOVAfm5.9[4, 1] , lower.tail = FALSE ) ) , ANOVAfm5.9[4, ] ) rownames(ANOVAfm5.9.1) <- c( "site" , "seedlot" , "site:seedlot" , " regressions" , " deviations" , "Residuals" ) # Pg. 82 ANOVAfm5.9.1 Code <- c( "a","a","a","a","b","b","b","b" , "c","d","d","d","d","e","f","g" , "h","h","i","i","j","k","l","m" ,"n","n","n","o","p","p","q","r" , "s","t","t","u","v" ) Tab5.14$Code <- Code ggplot( data = Tab5.14 , mapping = aes(x = Mean, y = Slope) ) + geom_point(size = 2) + geom_text( mapping = aes(label = Code) , hjust = -0.5 , vjust = -0.5 ) + theme_bw() + labs( x = "SeedLot Mean" , y = "Regression Coefficient" )
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam5.2) # Pg. 75 fm5.7 <- lm( formula = ht ~ site*seedlot , data = DataExam5.2 ) # Pg. 77 anova(fm5.7) fm5.9 <- lm( formula = ht ~ site*seedlot , data = DataExam5.2 ) # Pg. 77 anova(fm5.9) ANOVAfm5.9 <- anova(fm5.9) ANOVAfm5.9[4, 1:3] <- c(384, 384*964, 964) ANOVAfm5.9[3, 4] <- ANOVAfm5.9[3, 3]/ANOVAfm5.9[4, 3] ANOVAfm5.9[3, 5] <- pf( q = ANOVAfm5.9[3, 4] , df1 = ANOVAfm5.9[3, 1] , df2 = ANOVAfm5.9[4, 1] , lower.tail = FALSE ) # Pg. 77 ANOVAfm5.9 Tab5.14 <- DataExam5.2 %>% summarise( Mean = round(mean(ht, na.rm = TRUE), 0) , .by = seedlot ) %>% left_join( DataExam5.2 %>% nest_by(seedlot) %>% mutate(fm2 = list(lm(ht ~ sitemean, data = data))) %>% summarise(Slope = round(coef(fm2)[2], 2)) , by = "seedlot" ) %>% as.data.frame() # Pg. 81 Tab5.14 DevSS2 <- DataExam5.2 %>% nest_by(seedlot) %>% mutate(fm2 = list(lm(ht ~ sitemean, data = data))) %>% summarise(SSE = anova(fm2)[2, 2]) %>% ungroup() %>% summarise(Dev = sum(SSE)) %>% as.numeric() ANOVAfm5.9.1 <- rbind( ANOVAfm5.9[1:3, ] , c( ANOVAfm5.9[2, 1] , ANOVAfm5.9[3, 2] - DevSS2 , (ANOVAfm5.9[3, 2] - DevSS2)/ANOVAfm5.9[2, 1] , NA , NA ) , c( ANOVAfm5.9[3, 1]-ANOVAfm5.9[2, 1] , DevSS2 , DevSS2/(ANOVAfm5.9[3, 1]-ANOVAfm5.9[2, 1]) , DevSS2/(ANOVAfm5.9[3, 1]-ANOVAfm5.9[2, 1])/ANOVAfm5.9[4, 3] , pf( q = DevSS2/(ANOVAfm5.9[3, 1]-ANOVAfm5.9[2, 1])/ANOVAfm5.9[4, 3] , df1 = ANOVAfm5.9[3, 1]-ANOVAfm5.9[2, 1] , df2 = ANOVAfm5.9[4, 1] , lower.tail = FALSE ) ) , ANOVAfm5.9[4, ] ) rownames(ANOVAfm5.9.1) <- c( "site" , "seedlot" , "site:seedlot" , " regressions" , " deviations" , "Residuals" ) # Pg. 82 ANOVAfm5.9.1 Code <- c( "a","a","a","a","b","b","b","b" , "c","d","d","d","d","e","f","g" , "h","h","i","i","j","k","l","m" ,"n","n","n","o","p","p","q","r" , "s","t","t","u","v" ) Tab5.14$Code <- Code ggplot( data = Tab5.14 , mapping = aes(x = Mean, y = Slope) ) + geom_point(size = 2) + geom_text( mapping = aes(label = Code) , hjust = -0.5 , vjust = -0.5 ) + theme_bw() + labs( x = "SeedLot Mean" , y = "Regression Coefficient" )
Exam 6.2 Dbh mean, Dbh varince and number of trees per plot from 3 provinces("PNG","Sabah","Queensland") with 4 replications of 48 families.
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam6.2) DataExam6.2.1 <- DataExam6.2 %>% filter(Province == "PNG") # Pg. 94 fm6.3 <- lm( formula = Dbh.mean ~ Replication + Family , data = DataExam6.2.1 ) b <- anova(fm6.3) HM <- function(x){length(x)/sum(1/x)} w <- HM(DataExam6.2.1$Dbh.count) S2 <- b[["Mean Sq"]][length(b[["Mean Sq"]])] Sigma2t <- mean(DataExam6.2.1$Dbh.variance) sigma2m <- S2-(Sigma2t/w) fm6.3.1 <- lmer( formula = Dbh.mean ~ 1 + Replication + (1|Family) , data = DataExam6.2.1 , REML = TRUE ) # Pg. 104 # summary(fm6.3.1) varcomp(fm6.3.1) sigma2f <- 0.2584 h2 <- (sigma2f/(0.3))/(Sigma2t + sigma2m + sigma2f) cbind(hmean = w, Sigma2t, sigma2m, sigma2f, h2) fm6.4 <- lm( formula = Dbh.mean ~ Replication+Family , data = DataExam6.2 ) b <- anova(fm6.4) HM <- function(x){length(x)/sum(1/x)} w <- HM(DataExam6.2$Dbh.count) S2 <- b[["Mean Sq"]][length(b[["Mean Sq"]])] Sigma2t <- mean(DataExam6.2$Dbh.variance) sigma2m <- S2-(Sigma2t/w) fm6.4.1 <- lmer( formula = Dbh.mean ~ 1 + Replication + Province + (1|Family) , data = DataExam6.2 , REML = TRUE ) # Pg. 107 varcomp(fm6.4.1) sigma2f <- 0.3514 h2 <- (sigma2f/(0.3))/(Sigma2t+sigma2m+sigma2f) cbind(hmean = w, Sigma2t, sigma2m, sigma2f, h2) fm6.7.1 <- lmer( formula = Dbh.mean ~ 1+Replication+(1|Family) , data = DataExam6.2.1 , REML = TRUE ) # Pg. 116 varcomp(fm6.7.1) sigma2f[1] <- 0.2584 fm6.7.2<- lmer( formula = Ht.mean ~ 1 + Replication + (1|Family) , data = DataExam6.2.1 , REML = TRUE ) # Pg. 116 varcomp(fm6.7.2) sigma2f[2] <- 0.2711 fm6.7.3 <- lmer( formula = Sum.means ~ 1 + Replication + (1|Family) , data = DataExam6.2.1 , REML = TRUE , control = lmerControl() ) # Pg. 116 varcomp(fm6.7.3) sigma2f[3] <- 0.873 sigma2xy <- 0.5*(sigma2f[3]-sigma2f[1]-sigma2f[2]) GenCorr <- sigma2xy/sqrt(sigma2f[1]*sigma2f[2]) cbind( S2x = sigma2f[1] , S2y = sigma2f[2] , S2.x.plus.y = sigma2f[3] , GenCorr )
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam6.2) DataExam6.2.1 <- DataExam6.2 %>% filter(Province == "PNG") # Pg. 94 fm6.3 <- lm( formula = Dbh.mean ~ Replication + Family , data = DataExam6.2.1 ) b <- anova(fm6.3) HM <- function(x){length(x)/sum(1/x)} w <- HM(DataExam6.2.1$Dbh.count) S2 <- b[["Mean Sq"]][length(b[["Mean Sq"]])] Sigma2t <- mean(DataExam6.2.1$Dbh.variance) sigma2m <- S2-(Sigma2t/w) fm6.3.1 <- lmer( formula = Dbh.mean ~ 1 + Replication + (1|Family) , data = DataExam6.2.1 , REML = TRUE ) # Pg. 104 # summary(fm6.3.1) varcomp(fm6.3.1) sigma2f <- 0.2584 h2 <- (sigma2f/(0.3))/(Sigma2t + sigma2m + sigma2f) cbind(hmean = w, Sigma2t, sigma2m, sigma2f, h2) fm6.4 <- lm( formula = Dbh.mean ~ Replication+Family , data = DataExam6.2 ) b <- anova(fm6.4) HM <- function(x){length(x)/sum(1/x)} w <- HM(DataExam6.2$Dbh.count) S2 <- b[["Mean Sq"]][length(b[["Mean Sq"]])] Sigma2t <- mean(DataExam6.2$Dbh.variance) sigma2m <- S2-(Sigma2t/w) fm6.4.1 <- lmer( formula = Dbh.mean ~ 1 + Replication + Province + (1|Family) , data = DataExam6.2 , REML = TRUE ) # Pg. 107 varcomp(fm6.4.1) sigma2f <- 0.3514 h2 <- (sigma2f/(0.3))/(Sigma2t+sigma2m+sigma2f) cbind(hmean = w, Sigma2t, sigma2m, sigma2f, h2) fm6.7.1 <- lmer( formula = Dbh.mean ~ 1+Replication+(1|Family) , data = DataExam6.2.1 , REML = TRUE ) # Pg. 116 varcomp(fm6.7.1) sigma2f[1] <- 0.2584 fm6.7.2<- lmer( formula = Ht.mean ~ 1 + Replication + (1|Family) , data = DataExam6.2.1 , REML = TRUE ) # Pg. 116 varcomp(fm6.7.2) sigma2f[2] <- 0.2711 fm6.7.3 <- lmer( formula = Sum.means ~ 1 + Replication + (1|Family) , data = DataExam6.2.1 , REML = TRUE , control = lmerControl() ) # Pg. 116 varcomp(fm6.7.3) sigma2f[3] <- 0.873 sigma2xy <- 0.5*(sigma2f[3]-sigma2f[1]-sigma2f[2]) GenCorr <- sigma2xy/sqrt(sigma2f[1]*sigma2f[2]) cbind( S2x = sigma2f[1] , S2y = sigma2f[2] , S2.x.plus.y = sigma2f[3] , GenCorr )
Exam8.1 presents the Diameter at breast height (Dbh) of 60 SeedLots under layout of row column design with 6 rows and 10 columns in 18 countries and 59 provinces of 18 selected countries.
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam8.1) # Pg. 141 fm8.4 <- aov( formula = dbh ~ inoc + Error(repl/inoc) + inoc*country*prov , data = DataExam8.1 ) # Pg. 150 summary(fm8.4) # Pg. 150 model.tables(x = fm8.4, type = "means") RESFit <- data.frame( fittedvalue = fitted.aovlist(fm8.4) , residualvalue = proj(fm8.4)$Within[,"Residuals"] ) ggplot( data = RESFit , mapping = aes(x = fittedvalue, y = residualvalue) ) + geom_point(size = 2) + labs( x = "Residuals vs Fitted Values" , y = "" ) + theme_bw() # Pg. 153 fm8.6 <- aov( formula = terms( dbh ~ inoc + repl + col + repl:row + repl:col + prov + inoc:prov , keep.order = TRUE ) , data = DataExam8.1 ) summary(fm8.6)
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam8.1) # Pg. 141 fm8.4 <- aov( formula = dbh ~ inoc + Error(repl/inoc) + inoc*country*prov , data = DataExam8.1 ) # Pg. 150 summary(fm8.4) # Pg. 150 model.tables(x = fm8.4, type = "means") RESFit <- data.frame( fittedvalue = fitted.aovlist(fm8.4) , residualvalue = proj(fm8.4)$Within[,"Residuals"] ) ggplot( data = RESFit , mapping = aes(x = fittedvalue, y = residualvalue) ) + geom_point(size = 2) + labs( x = "Residuals vs Fitted Values" , y = "" ) + theme_bw() # Pg. 153 fm8.6 <- aov( formula = terms( dbh ~ inoc + repl + col + repl:row + repl:col + prov + inoc:prov , keep.order = TRUE ) , data = DataExam8.1 ) summary(fm8.6)
Exam8.1.1 presents the Mixed Effects Analysis of Diameter at breast height (Dbh) of 60 SeedLots under layout of row column design with 6 rows and 10 columns in 18 countries and 59 provinces of 18 selected countries given in Example 8.1.
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam8.1) # Pg. 155 fm8.8 <- lmerTest::lmer( formula = dbh ~ 1 + repl + col + prov + (1|repl:row) + (1|repl:col) , data = DataExam8.1 , REML = TRUE ) # Pg. 157 ## Not run: varcomp(fm8.8) ## End(Not run) anova(fm8.8) anova(fm8.8, ddf = "Kenward-Roger") predictmeans(model = fm8.8, modelterm = "repl") predictmeans(model = fm8.8, modelterm = "col") predictmeans(model = fm8.8, modelterm = "prov") # Pg. 161 RCB1 <- aov(dbh ~ prov + repl, data = DataExam8.1) RCB <- emmeans(RCB1, specs = "prov") %>% as_tibble() Mixed <- emmeans(fm8.8, specs = "prov") %>% as_tibble() table8.9 <- left_join( x = RCB , y = Mixed , by = "prov" , suffix = c(".RCBD", ".Mixed") ) print(table8.9)
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam8.1) # Pg. 155 fm8.8 <- lmerTest::lmer( formula = dbh ~ 1 + repl + col + prov + (1|repl:row) + (1|repl:col) , data = DataExam8.1 , REML = TRUE ) # Pg. 157 ## Not run: varcomp(fm8.8) ## End(Not run) anova(fm8.8) anova(fm8.8, ddf = "Kenward-Roger") predictmeans(model = fm8.8, modelterm = "repl") predictmeans(model = fm8.8, modelterm = "col") predictmeans(model = fm8.8, modelterm = "prov") # Pg. 161 RCB1 <- aov(dbh ~ prov + repl, data = DataExam8.1) RCB <- emmeans(RCB1, specs = "prov") %>% as_tibble() Mixed <- emmeans(fm8.8, specs = "prov") %>% as_tibble() table8.9 <- left_join( x = RCB , y = Mixed , by = "prov" , suffix = c(".RCBD", ".Mixed") ) print(table8.9)
Exam8.1.2 presents the Analysis of Nested Seedlot Structure of Diameter at breast height (Dbh) of 60 SeedLots under layout of row column design with 6 rows and 10 columns in 18 countries and 59 provinces of 18 selected countries given in Example 8.1.
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam8.1) # Pg. 167 fm8.11 <- aov( formula = dbh ~ country + country:prov , data = DataExam8.1 ) b <- anova(fm8.11) Res <- length(b[["Sum Sq"]]) df <- 119 MSS <- 0.1951 b[["Df"]][Res] <- df b[["Sum Sq"]][Res] <- MSS*df b[["Mean Sq"]][Res] <- b[["Sum Sq"]][Res]/b[["Df"]][Res] b[["F value"]][1:Res-1] <- b[["Mean Sq"]][1:Res-1]/b[["Mean Sq"]][Res] b[["Pr(>F)"]][Res-1] <- df( b[["F value"]][Res-1] , b[["Df"]][Res-1] , b[["Df"]][Res] ) b emmeans(fm8.11, specs = "country")
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam8.1) # Pg. 167 fm8.11 <- aov( formula = dbh ~ country + country:prov , data = DataExam8.1 ) b <- anova(fm8.11) Res <- length(b[["Sum Sq"]]) df <- 119 MSS <- 0.1951 b[["Df"]][Res] <- df b[["Sum Sq"]][Res] <- MSS*df b[["Mean Sq"]][Res] <- b[["Sum Sq"]][Res]/b[["Df"]][Res] b[["F value"]][1:Res-1] <- b[["Mean Sq"]][1:Res-1]/b[["Mean Sq"]][Res] b[["Pr(>F)"]][Res-1] <- df( b[["F value"]][Res-1] , b[["Df"]][Res-1] , b[["Df"]][Res] ) b emmeans(fm8.11, specs = "country")
Exam8.2 presents the Diameter at breast height (Dbh) of 60 SeedLots under layout of row column design with 6 rows and 10 columns in 18 countries and 59 provinces of 18 selected countries.
Muhammad Yaseen ([email protected])
Sami Ullah ([email protected])
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam8.2) # Pg. fm8.2 <- lmerTest::lmer( formula = dbh ~ repl + column + contcompf + contcompf:standard + (1|repl:row) + (1|repl:column) + (1|contcompv:clone) , data = DataExam8.2 ) ## Not run: varcomp(fm8.2) ## End(Not run) anova(fm8.2) Anova(fm8.2, type = "II", test.statistic = "Chisq") predictmeans(model = fm8.2, modelterm = "repl") predictmeans(model = fm8.2, modelterm = "column") emmeans(object = fm8.2, specs = ~contcompf|standard)
library(car) library(dae) library(dplyr) library(emmeans) library(ggplot2) library(lmerTest) library(magrittr) library(predictmeans) data(DataExam8.2) # Pg. fm8.2 <- lmerTest::lmer( formula = dbh ~ repl + column + contcompf + contcompf:standard + (1|repl:row) + (1|repl:column) + (1|contcompv:clone) , data = DataExam8.2 ) ## Not run: varcomp(fm8.2) ## End(Not run) anova(fm8.2) Anova(fm8.2, type = "II", test.statistic = "Chisq") predictmeans(model = fm8.2, modelterm = "repl") predictmeans(model = fm8.2, modelterm = "column") emmeans(object = fm8.2, specs = ~contcompf|standard)